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S U M M A R Y  
This paper deals with axisymmetric vibrations of deep sandwich spherical shells. The shell consists of a thick core and 
two face sheets of the same isotropic material with equal thickness. The appropriate differential equations have been 
obtained in terms of two new arbitrary functions which replace the meridional displacement components. The solution 
is in terms of Legendre functions from which numerical results are computed by using an iterative technique. Effects of 
geometric and elastic properties of the core and the face sheets are presented in the form of graphs. 

1. Introduction 

In recent years considerable interest has been shown by many investigators in the dynamic 
behavior of sandwich plates and shells. With the exception of a few, most of the papers available 
in literature deal with the vibration of homogeneous spherical shells [-1, 4, 5] and shallow 
spherical sandwich shells [2, 3]. The free vibrations of shallow and deep homogeneous shells 
have been studied quite intensively by many authors and is available in literature. Very little 
work has been published on the vibrations of spherical sandwich shells. Koplik and Yu [2] 
have solved the problem of axisymmetric vibrations of spherical sandwich caps using the 
associated variational equations of motion and studied the influence of curvature as well as 
that of the thickness shear deformation on the natural frequencies. Mirza and Doige [3] 
presented the transverse vibrational characteristics of a three-layered shallow spherical 
sandwich shell. In their analysis, the longitudinal inertia terms have been neglected and first 
three modes of the frequency response are shown. 

In this paper, axisymmetric vibrations of nonshallow spherical sandwich shells, closed at one 
pole and open at the other, have been studied. The shell consists of a thick core and of two face 
sheets of the same isotropic material with equal thickness.The core is assumed to be incom- 
pressible in the radial direction and the effect of thickness shear deformation has been con- 
sidered. The face parallel stresses in the core are assumed to be negligible and the faces are taken 
as membranes. The complete system of differential equations, based on linear strain-disPlace- 
ment relationships,has been derived from the general equations of motion in a continuum. The 
appropriate form of the differential equations is achieved by introducing two new arbitrary 
functions in terms of the meridional displacement components. 

The general solution of the differential equations has been expressed in terms of Legendre 
functions of real as well as complex orders. The highly transcendental equations are solved on 
the digital computer using an iterative technique. The effects of the geometric and elastic 
properties of the core and the face sheets are presented in the form of graphs. 

2. Formulation of the problem 

The equations of motion in a continuum for the axisymmetric case in spherical coordinates 
r, ~b, 0 can be written as [6] 

(r 2 a,),r + r zr~ ' ~ + r ( -  a~ - a 0 + cot ~b %q,) = p r 2 w m 
(r 2 Z~),r + r a~,4 + r {r,e + (a4 -- a0) cot ~9} = p r 2 v, t t  (2.1) 

where at, o- 6 and o- o are the normal stresses and z~, is the shear stress. Also, v and w represent 
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Figure 1. Sandwich shell elements showing forces and variation of displacement. 

the c o m p o n e n t s  of  d isp lacement  in r and  r direct ions respectively. The  n o r m a l  strain c o m p o -  
nents er, e4, , and  e0 and the shear strain 7r4, are given as 

~r -~- W,r 

e4, = (v,4 , + w) / r  (2.2) 
e0 = (v cot r + w) / r  

7,4, = (rv, ,  -- v + w,4,)/r 

In  eqs. (2 .1)and (2.2), the no ta t ion  used for differentiation is 

c~w/& = w , , ,  etc. 

W e a k  core 

The  assumpt ions  are 

(i) 
(ii) 

(iii) 

% = ao = Z4,o = 0 (2.3a) 

The  core is incompressible  in the radial  direction, 

wl = w2 = wc = w (2.3b) 

The  var ia t ion  of the mer id iona l  d isp lacement  a long the thickness of  the core is t aken  in 
the fo rm 

Z 
v = v* + - ~ (2.3c) 

c 

where  

v* = (v,  + v2) /2  (2.3d) 
= (v, " v 2 ) / 2  
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The quantities v I and v 2 are the meridional displacements for face sheet 1 and 2 respectively 
and 2c is thickness of the core. The variable z represents the distance measured from the 
middle surface of the core in the radial direction. Integrating eq. (2.1) between z = + c and using 
eqs. (2.2) and (2.3), the following equations are obtained. 

(R + z)2 a,[~=~-(R + z)Z a, l~= _~+ 2cG~ tw,oo + cot ~w~ 
k " } - -v*o-cot  qSv* + --(~ r  ~b~) = 2cp~R2(1 +�89 tt (2.4) 

C ~ 

l "} (R+z)2v,+[~=~-(R+z)Zz,,[~=_~+2cQ w,ee-v* + -- 
C 

= 2cpr 2 (l+�89 + ~-R ~,,t . 

The density Of the core and its shear modulus are designated by p~ and G~ respectively. 

Face layers 

The stress resultants in the ith face sheet of thickness h are defined in the following manner 

f 
h/2 

N4~ i = ( l  + z J R i ) a 4 ~ i d z  i 
-- hi2 

f 
h/2 

Noi = (1 + zi/Ri)aoidz i (2.5) 
- h / 2  

h/2 (1 +z~/R3rr~dzi. 
Q~i  ~ d -h /2  

Use of eqs. (2.2) and the Hooke's Law yields stress resultants in terms of displacements for the 
i th face sheet 

K K {v~ cot c~+w+v(v~.,+w)} (2.6) Noi = ~ {v, , ,+w+v(vi  cot ~b+w)} Noi = Rii 

where K = Eh/(1 - v  2) and E and v are modulus of elasticity and Poisson's ratio in order. For 
free vibrations of the shell, its outer surfaces are stress free. Thus 

z~0, [~, =h/2 = Z,O~ I z,= -h/2 = 0 (2.7) 

The radii of the middle surface of the face sheets are written as 

R 1 = R + 6  
R 2 -- R -  6 (2.8) 

where 

6 = c + h/2 (2.9) 

The equations for the face sheets, as given below, are obtained by the introduction of eqs. 
(2.7) and (2.8) in the integrated form of eq. (2.1) 

- ( R 1  + zl)Z a,11~1= -h/2 - K ( 1  + v)(v, .,i+ cot ~bvl +2w) = phR2 (1 +621R 2 + 261R)w., 
- (R1 + z,) 2 z,O, I~, = -hi2 + K {v, .r162 + cot ~b vl . e -  c~ q~ vl + 
+(1 - v ) v  1 +(1 -]- ~))Wl~b} = phR2(1 + c52/R 2 +26/R)v 1 ,,, 

(R ,  + z , )  ~ o~2 I., =,/~ - K ( i  + ~)(v~ ,~ + cot  ~ v ,  + 2w) = p hR ' ( i  + ~ ' / R  ' - 2 ~ / R ) w , .  

(R2 + z2) 2 z,4~ 1~ = hi2 + K {v2 ,~  + cot ~b v2 4 -  c~ q5 v2 + 
+ (1 - v) v2 + (1 + v)W,~b} = phR 2 (1 + (~2/R2 - -  26/R) V2,tt. (2.10) 
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Equations for composite shell 

To establish governing differential equations, eqs. (2.4) and (2,10) are combined by suitable 
addi t ion and subtraction. The stresses at  the interfaces are eliminated by using the following 
stress continui ty conditions. 

arl~=c = arll~l=-h/2 ; arlz=-c = ar2]z2=h/2 (2.11) 

The summat ion  of eqs. (2.4a), (2.10a and c) yields 

r. (1 - ++ + cot  w r. (1 - + 1 + + 

R 
+ c o t  c~v*)+r~rh(1--v 2) c (~,~+ cot q5 ~)--2(1+ v)w = (1 - v : ) p R 2 s l w , , / E  (2.12a) 

Similarly, eq. (2.12b) is obta ined from eqs. (2.4b), (2.10b and d). 

{rGrh(1 --v2)+ 1 + v}w,4,+v*oo+cot q~ v*O-- cosec 2 qSv* + {1 --v,rGrh(1 --V2)} V* 
+ r G r h (1 - v2)RfJ/c = pR 2 (1 - v 2) {s~ v*, + s2 ~,,}/E (2.12b) 

Subtraction of  eql (2.10d) from (2.10b) and substitution of  the values of zro at z = _+ c results in 

R . 
_ r G ( l _  v2)_~Rw,~+rG(l_v2)~ v +~, ~4, + cot qS~, ~ -  cosec 2 qS~ + 

( / R 2 
~ ( 1 - v ) - r ~ ( 1 - v 2 ) ~  = pR2(1-v2){SaV*.+s4~ .} /E (2.12c) + 

In the above equations 

ra = Q / E ,  rp= p~/p, r h= c/h s2 = 26/R + 2r~ (2.13) 
sa = 1 - } - ( ~ 2 / R 2 + r p r h ( l + � 8 9  2) s 3 = 26/R and s4 = 1 + 6 2 / R  2 

3. Solution of the differential equations 

The solution ofeqs. (2.12) for the free axisymmetric vibrations of deep shell is sought in the form 

W = e i~t W ,  v* : e imt V* , V = e i~ F (3.1) 

The quantities 0* and 0 are introduced such that  

0* = V%+cot  ~b V* 0 =  V,e+cot  ~b V (3.2) 

Equat ions (2.12) are simplified by the use of eqs. (3.1) and (3.2) 

A~ ( W o 0 + c o t  q5 W ~ ) + A :  W+ A 30*+A40 = 0 
B~ W ~ + 0 * o + B 2  V*+B3 V =  0 (3.3) 
Ca W~+C2V*+O,o+C3V= 0 

where, 

A 1 = rorh(1--v2),  

A 3= - { r  Gr h (1 - ve )+ l+v} ,  
B a = rGrh(1--V2)+l+v 
B 2 = 1--v--rGrh(a--v2)+f22sa(1--v 2) 
B 3 = ror  h (1 - v2)R/c + 0 2 S 2 (1 -- V z) 
C a = - r a ( 1 - v 2 ) R / h ,  
C3 = 1 - v + f22 s4 (1 - v 2 ) -  ra (1 - v 2) R2/ch 

A 2 = f22s l (1 -v2 ) -2 ( l+v)  

A 4 =  r Gr h ( 1 - v 2 ) R / c  

C2 = rG(1-vZ)R/h+f2z(1-v2)s3 

(3.4) 
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and f2 is a nondimensional frequency parameter given by 

Q 2  pf~2RZ/E (3.5) 

Equations (3.3) can be further simplified to the form shown below, 

(A1V2 + A2)W+ A30* + A40 = 0 
B, V 2 W+(VZ+Bz)O*+B3 0 = 0 (3.6) 
C 1 V 2 W - ~  C 2 0* -~ (V 2 n I- C3) 0 = 0 

Here V 2 is the Laplace operator given by 

V 2 ~--- 0 2 / ~ b  z -[- cot q5 ~/Oq5 

The general solution of eqs. (3.6) can be expressed in terms of Legendre functions of degree 
n~ (~ = 1, 2, 3). For a sandwich spherical shell closed at one pole and open at the other, W, 
0* and 0 are assumed as, 

3 

0* = Z A,~ P,,, (cos qb) 
0t=l 

3 

B,, Pn, (cos ~b) (3.7) 0 = E  
ct=l 

3 

ct=l 
c.  P, (cos 4) 

For brevity, a parameter 2~ is introduced such that 

n~(n~+ 1) = 2~ (ii) 

which yields 

n~ = (2, + ~) - ~ (iii) 

Replacing eqs. (3.7) in eqs. (3.6), a system of equations is obtained in terms of the frequency 
and the unknown coefficients. For a nontrivial solution of A,,, B,,, and C,,, the determinant 
of the coefficient matrix must vanish, leading to the following characteristic equation. 

A123+az22+a32~+a4 = 0 (3.8) 

where, 

a2 = - A z  ,+ AaB1 +A4C1 - A 1  B 2 - A  1 C 3 

a 3 = AIB2C3-A1B3C2+AaB2+A2C3+A3B3C 1-A3B 1C3+A4BICz-A4BzC1 
a4 = A z B 3 C 2 - A 2 B 2 C  3 

The displacements V* and V are obtained by substituting eqs. (3.7) in eqs. (3.3b and c) and 
simplifying them with the help of eqs. (3.6) 

3 

V* ~ ~, fl~{P,~(cos qS)},,C,~ (3.9) 
ct=l 

3 

V = E ,7 {P.Acos r 
0~=1 

The parameters/3~ and q~ are given as 
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4. Frequency equations 

The boundary conditions for the clamped edge are written as 

W = V * = V = 0  at ~b=q~o (4.1) 

These three conditions lead to three equations in terms of the constants C,~ (0(= 1, 2, 3) 
The frequency equation in general is obtained by making the determinant of the coefficient 

matrix of C,~ equal to zero. Symbolically it gives, 

]Di~ [ = 0 (i, ~ = 1, 2, 3) (4.2) 

The exact values of the elements Di~, which are obtained from the boundary conditions 
prescribed at the edge ~b = q~o, are given as 

DI~ = en=(COS ~bo) 

D2~ = fl~ {P,~ (cos ~bo) }.0 (4.3) 

D3, = r/, {P,,(cos r ; (a = 1, 2, 3) 

5. Numerical computation and discussion of the results 

The numerical computations have been carried out for the nondimensional frequency para- 
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Figure 2. Orders of Legendre functions vs f2. 
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meter f2 of the sandwich shell. The variation of f2 has been studied with the geometric and elastic 
properties of the core and the face sheets. Since the analytical closed form solutions of highly 
transcendental eqs. (4.2) occurring in the frequency computation is not possible, high speed 
digital computer has been used to solve the equations by means of an iteration process. 

In order to generate the numerical results, the quantities ra, rp and r h which are defined in 
eq. (2.13) are selected as, rG = 1/4400, rp = 1/34.4, r h = 5. The ratio h/R is varied over the range 
0.001 to 0.005 and the Poisson's ratio v=0.3. The quantities A1, A 2 . . . .  , C2, C3 given by 
eqs. (3.4) are the functions of these parameters. At this stage there remain only two unknowns 
2~ and ~2 which are obtained from the eqs. (3.8) and (4.2). By specifying the values of f2, the 
roots 2~ (~ = 1, 2, 3) of the characteristic cubic eq. (3.8) are calculated. Since the coefficients of 
eq. (3.8) are real, it always generates one real root and the other two are either real or complex 
conjugates. The orders of Legendre functions occurring in the frequency determinant (4.2) 
are evaluated with the help of eq. (iii) and the values of ,~. In the case, when the roots of the 
characteristic cubic equation are real, the order of the Legendre function n~ (e = 1, 2, 3) are 
either real or of the form 

n~ = - �89 + ip~ 

1.0 

0 .9  

s 

0-8! 

0 .7  

0-6 

r h -- 5 . 0 ,  i'p _ - 1 / 3 4 . 4 ,  t" G = i / ,1 .4oo 

f 

f 

I I I I 

I 2 5 4 5 

( h / R )  x IO s 
Figure 3. Frequency parameter f2 vs h/R for clamped edge at ~b = 90 ~ 

Journal of Engineering Math., Vol. 8 (1974) 71-79 



78 S. Mirza, A. V. Singh 

I-0 

w / w  o 

0 

- I ' 0  

rh= 5"0, l"p= 1/34"4, rG= 1/4400 

\ i ~ X ,  ~ h / R  :0"001, ~b :60 ~ 

lt" ~. �9 / I ". "N/\ ~'. ~.,. 

',,\X/\/ " - - "  " 

I I I I I 

I 0* 2 0  ~ 30" 40*  50* 60* 

Figure 4. Mode shapes for clamped edge spherical sandwich shell. 
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where p~ is a real quantity thereby yielding real values of P,~(cos qS). When the two roots are 
complex conjugates, the resulting P,,(cos q~) are also complex conjugates. A plot of indices 
nl, n2, and n3 as functions of f2 has been shown in Fig. 2. 

As the values of Legendre functions are evaluated, the values of frequency determinant 
(4.2) are obtained for a series of values of ~, keeping rG, rp, rh, V, and h/R constant. The same 
procedure is repeated until value of the determinant changed the sign and then an accurate 
value of the root is generated. 

The natural frequencies up to five modes for clamped edge hemispherical shell have been 
plotted with t2 as the ordinate and h/R as the abscissa as shown in Fig. 3. The lowest natural 
frequency increases very slowly and appears to be almost constant in Fig. 3. The frequency f2 
increases with h/R for all modes, but at the same time the slope of the curve decreases. Detailed 
calculations for q5 = 60 ~ to q5 = 90 ~ were performed, but, due to space limitations, frequency 
variation is shown for q5 = 90 ~ 

In Figs. 4 and 5 the variations ofw/wo, where Wo is the radial displacement at q5 = 0, are shown 
with ~b for opening angles 60 ~ and 90 ~ respectively. In these figures the plots ofw/wo are examin- 
ed up to five modes. The number of nodal circles in a particular mode is the same as the mode 
number. Within the framework of the present assumptions that the face sheets are membranes 
and the core is capable of taking shear deformations, it is improper to distinguish between the 
fixed and pinned conditions. In consequence, the slope w o is irrelevant. 
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